Partner im RedaktionsNetzwerk Deutschland
Höre Modellansatz in der App.
Höre Modellansatz in der App.
(256.086)(250.186)
Sender speichern
Wecker
Sleeptimer

Modellansatz

Podcast Modellansatz
Gudrun Thäter, Sebastian Ritterbusch
Bei genauem Hinsehen finden wir die Naturwissenschaft und besonders Mathematik überall in unserem Leben, vom Wasserhahn über die automatischen Temporegelungen a...

Verfügbare Folgen

5 von 250
  • Wahlmodelle
    Gudrun sprach im Januar 2024 mit zwei Studenten ihrer Vorlesung Mathematical Modelling and Simulation: Lukas Ullmer und Moritz Vogel. Sie hatten in ihrem Projekt Wahlmodelle ananlysiert. In dem Gespräch geht es darum, wie man hierfür mathematische Modelle findet, ob man Wahlsysteme fair gestalten kann und was sie aus den von ihnen gewählten Beispielen gelernt haben. Der Fokus ihrer Projektarbeit liegt auf der Betrachtung und Analyse von Wahlen, in denen mehrere verschiedene Wähler zu einem Thema abstimmen. Formal von Relevanz sind hierbei die sogenannten Wahlsysteme, welche die Art der Aggregation der Wählerstimmen beschreiben. Diese fallen in der Praxis recht vielfältig aus und über die Jahre wurden verschiedenste Wahlsysteme vorgeschlagen, angewendet und auch analysiert. In dieser Arbeit werden drei Kategorien präferenzbasierter Wahlsysteme analysiert: vergleichsbasierte Systeme, Scoring-Systeme sowie Approval-Systeme. Aufbauend darauf erfolgt die Konstruktion mehrstufiger und hybrider Wahlsysteme. Desweiteren werden verschiedenen Wahleigenschaften wie z.B. die Nicht-Diktatur oder die Strategiesicherheit betrachtet. Diese meist wünschenswerten Eigenschaften schließen sich teilweise gegenseitig aus. Die Themen Wahlmanipulation und Wahlkontrolle liegen deshalb besonders im Fokus. Literatur und weiterführende Informationen J. Rothe u.a. Einführung in Computational Social Choice: Individuelle Strategien und kollektive Entscheidungen beim Spielen, Wählen und Teilen. Spektrum Akademischer Verlag Heidelberg, 2012. doi: 10.1007/978-3-8274-2571-3. A.D. Taylor and A.M. Pacelli: Mathematics and Politics - Strategy, Voting, Power, and Proof. Springer-Verlag, Berlin Heidelberg, 2nd corrected ed. 2008, corr. 3rd printing, 2009. H.-J. Bungartz e.a.: Modellbildung und Simulation - Eine anwendungsorientierte Einführung Kapitel 4: Gruppenentscheidungen, Springer, 2009. G.G. Szpiro: Die verflixte Mathematik der Demokratie, Springer, 2011. W.D. Wallis. The Mathematics of Elections and Voting. Springer, Berlin, Heidelberg, 2014. K. Loewenstein: Verfassungsrecht und Verfassungspraxis der Vereinigten Staaten, Springer-Verlag, Berlin Heidelberg New York, 1959. Podcasts P. Stursberg, G. Thäter: Social Choice, Gespräch im Modellansatz Podcast, Folge 129, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. M. Lübbecke, S. Ritterbusch: Operations Research, Gespräch im Modellansatz Podcast, Folge 110, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. P. Staudt, G. Thäter: Wahlsysteme, Gespräch im Modellansatz Podcast, Folge 27, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. M. Fehndrich, T. Pritlove: Wahlrecht und Wahlsysteme, Gespräch im CRE Podcast, Folge 128, Metaebene Personal Media, 2009. S. Gassama, L. Harms, D. Schneiderhan, G. Thaeter: Gruppenentscheidungen, Gespräch im Modellansatz Podcast, Folge 229, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020.
    --------  
    16:12
  • Podcast Lehre
    In dieser Folge geht es darum, wie Sebastian und Gudrun Mathematik an Hochschulen unterrichten und welche Rollen das Medium Podcast und konkret unser Podcast Modellansatz dabei spielen. Die Fragen stellte unsere Hörerin Franziska Blendin, die in der Folge 233 im Jahr 2020 über Ihr Fernstudium Bachelor Maschinenbau berichtet hatte. Sie hatte uns vorab gefragt: "Was versprecht ihr euch von dem Podcast - was ist euer Fazit nach den Jahren den ihr ihn schon macht und wie gestaltet ihr warum Lehre? Was macht euch Spaß, was sind Herausforderungen, was frustriert euch? Warum und wie gestaltet ihr Lehre für Studierende außerhalb der Mathematik, also beispielsweise Maschinenbau?" Es ist ein bisschen lustig, dass die erste Folge Modellansatz, in der Sebastian und Gudrun sich spontan ein Thema zum reden suchten ausgerechnet ein Gespräch über eine neu konzipierte Vorlesung war und der Podcast diese Vorlesung bis heute in unterschiedlichen Rollen begleitet, obwohl das nicht zum ursprünglichen Plan gehörte, wie wir uns einen Podcast über Mathematik vorgestellt hatten. Einerseits haben viele kein Verständnis dafür, was alles mit Mathe gemacht werden kann, andererseits erleben wir intern andauernd so viele spannenden Vorträge und Personen. Eigentlich bringen wir die beiden Sachen in unserem Podcast nur zusammen. Das Medium Podcast ist dabei durch das Gespräch sehr niederschwellig: Es ist so sehr leicht mit den Gesprächen in die Themen einzusteigen und auch auf viel weiteren Ebenen sich darüber zu unterhalten. Wir sind überzeugt, dass wir mit Text oder Video nie so viele und so umfangreiche Austauschsformen einfangen können, mal ganz abgesehen davon, dass die Formate dann an sich für uns zu einer viel größeren Herausforderung in Form und Darstellung geworden wären. Wir hoffen, dass sich irgendwann auch mal eine Person dazu bekennt, wegen unseres Podcasts ein Mathe- oder Informatikstudium zu erwägen, aber bisher ist das tolle Feedback an sich ja schon eine ganz ausgezeichnete Bestätigung, dass diese Gespräche und Themen nicht nur uns interessieren. Viele der Gespräche haben sich auch schon vielfach für uns gelohnt: Sebastian hat aus vielen Gesprächen Inspirationen für Vorlesungen oder andere Umsetzungen gewonnen. Ein Fazit ist auf jeden Fall, dass das Ganze noch lange nicht auserzählt ist, aber wir auch nicht außerhalb unserer Umgebung leben. In der Pandemie sind einerseits Gespräche am Tisch gegenüber, wie wir sie gerne führen, schwierig geworden, und gleichzeitig ist die Lehre so viel aufwendiger geworden, dass kaum Zeit verblieb. Aufnahmen, waren zuletzt hauptsächlich "interne" Podcasts für Vorlesungen, damit die Studierenden daheim und unterwegs sich mit den Inhalten auseinandersetzen können. Gudrun hat damit auch Themen vorbereitet, die sie anschließend in die Zeitschrift Mitteilungen der Deutschen Mathematiker-Vereinigung als Artikel geschrieben hat. Das betrifft insbesondere die Folgen zu Allyship und zum Mentoring in der Mathematik. In der Vermittlung von Mathematik im Studium gibt es kaum Themen, die nicht irgendwo spannend und interessant sind. Um die Themen zu verstehen oder wie dort die Lösungen oder Verfahren gefunden wurden, muss die Theorie behandelt und in weiten Teilen verstanden werden. Da aber "Rosinenpickerei" nichts bringt (also nur die nötigsten Teile von Theorie zu erzählen), geht es darum, ein sinnvolles Mittelmaß zu finden. Also auf der einen Seite ein gutes Fundament aufzubauen zu einem Thema, aber gleichzeitig noch Zeit für Einblicke in spannende und interessante Teile zu haben. Es ist in der Vorbereitung auf der einen Seite total schön, wenn dann eine Anwendung perfekt in die Theorie passt, beispielsweise entwirft Sebastian gerade ein Skript zu formalen Sprachen und Grammatiken, und dann kann man das Komprimierverfahren LZW als eine dynamische Grammatik sehen. Oder es geht um theoretische und "langweilige" Zustandsmaschinen und dann gibt es das Beispiel, dass die Raspberry Pi Foundation gerade dazu einen eigenen Chip (RP2040) mit solchen Komponenten veröffentlicht, oder mit dem Newton-Verfahren wurde die schnelle Quadratwurzel für das Computerspiel Quake erst möglich. Ob das dann auch so toll in der Vorlesung herüberkommt, ist nochmal ein eigenes Thema, aber wenn es klappt, so ist das natürlich großartig. Umgekehrt frustriert es dann schon, wenn die Grundlagen nicht bei möglichst vielen ankommen- nicht jede Person muss sich ja bis ins letzte für ein Thema begeistern, aber am Ende sollte der Großteil die wichtigen Hauptsachen mitnehmen. Leider gibt es immer ein paar Leute, wo das dann trotz vieler Angebote leider nicht so gut klappt, und das frustriert natürlich. Dann muss geschaut werden, woran es liegen könnte. Aktuell hilft das Nörgeln und Nerven, wenn nicht regelmäßig die angebotenen Übungsaufgaben abgegeben werden, wohl mit am Besten. Warum werden mathematische Themen im Ingenieurstudium relevant: Das hängt ganz davon ab, welche Kurse wir haben, und was gebraucht wird... Sebastian unterrichtet jetzt gerade Informatik-Studierende und in den Wirtschaftswissenschaften, früher außer MACH/CIW/BIW/MAGE... auch mal Mathe-Lehrende. Das "Wie" ist dann jeweils auf die Gruppe zugeschnitten: Zunächst gibt es ja unterschiedliche Voraussetzungen: Curriculum, Haupt- & Nebenfächer, etc.. Dann gibt es eine Liste von Fertigkeiten, die vermittelt werden sollen und können, und dann besonders in den Vorlesungen außerhalb des Mathematik-Studiums die lästige Beschränkung des Umfangs der Veranstaltung, und wieviel Eigenarbeit erwartet werden kann. Grundsätzlich möchten wir auch bei den Nicht-Hauptfächlern so viel davon erzählen, was dahinter steht- statt "ist halt so"- und was heute damit gemacht werden kann. Diese Motivation macht vielen das Lernen leichter. Es muss aber auch immer viel selbst gemacht werden, dh. viele Aufgaben und prototypische Problemlösungen, denn Mathe lernt sich nicht durchs zuhören alleine. (leider... ;) Damit geht das Puzzle-Spiel los: Welche Grundlagen müssen aufgebaut werden, und was kann wie in der gegebenen Zeit sinnvoll behandelt werden... Und natürlich immer mit dem Blick darauf, ob es Anküpfungspunkte in die Studienrichtungen der Studierenden gibt. Literatur und weiterführende Informationen F. Blendin: Fußballfibel FSV Frankfurt MINT-Kolleg Baden-Württemberg fyyd - Die Podcast-Suchmaschine F. Blendin, S. Düerkop: Die Suche nach der ersten Frau, Zeit, 2.9.2020. GanzOhr-Konferenzen auf Wissenschaftspodcasts.de. RP2040 Dokumentation, Prozessor mit 8 Zustandsmaschinen. Schülerlabor Mathelabor der Fakultät für Mathematik am KIT und das Onlinelabor Einsetzungsverfahren gegenüber dem Gauß-Jordan-Verfahren Vom traditionellen Riemann-Integral zum modernen Lebesgue-Integral mit Nullmengen, das natürlich kompatibel ist zur Maßtheorie, Fourier-Transformation und zu den Sobolev-Räumen für Finite-Elemente Farbwahrnehmung durch Sinneszellen - Sinneszellen für langwelliges Licht werden auch durch kurzwelliges Licht angesprochen und das schließt die Illusion des Farbkreises Podcasts von Franziska Legende verloren Der Podcast über die vergessenen Geschichten des deutschen und internationalen Frauenfußballs, Produziert von Sascha, Sven, Petra, Freddy, Helga, Sunny, Franzi G4 Podcast über CNC-Maschinen (Thema Zerspanung, zuletzt mit Sonderfolgen zum Lernen im Studium) Braucast - Ein Hobbybrau-Podcast. Podcasts zum Thema Mathe in der Hochschullehre A. Chauhan, G. Thäter: CSE, Gespräch im Modellansatz Podcast, Folge 249, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2022. F. Blendlin, G. Thäter: Fernstudium Maschinenbau, Gespräch im Modellansatz Podcast, Folge 233, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020. Y. Cai, S. Dhanrajani, G. Thäter: Mechanical Engineering, Gespräch im Modellansatz Podcast, Folge 176, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. ]http://modellansatz.de/maschinenbau-hm|G. Thäter, G. Thäter: Maschinenbau HM], Gespräch im Modellansatz Podcast, Folge 169, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. G. Thäter, J. Rollin: Advanced Mathematics, Conversation in the Modellansatz Podcast, Episode 146, Department of Mathematics, Karlsruhe Institute for Technology (KIT), 2017. A. Kirsch: Lehramtsausbildung, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 104, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. F. Hettlich, G. Thäter: Höhere Mathematik, Gespräch im Modellansatz Podcast, Folge 34, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014. M.-L. Maier, S. Ritterbusch: Rotierender 3d-Druck, Gespräch im Modellansatz Podcast, Folge 9, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2013. C. Spannagel, S. Ritterbusch: Flipped Classroom, Gespräch im Modellansatz Podcast, Folge 51, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015. M. Lübbecke, S. Ritterbusch: Operations Research, Gespräch im Modellansatz Podcast, Folge 110, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. Podcasts als Projektabschluss S. Bischof, T. Bohlig, J. Albrecht, G. Thäter: Benchmark OpenLB, Gespräch im Modellansatz Podcast, Folge 243, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2021. Y. Brenner, B. Hasenclever, U. Malottke, G. Thäter: Oszillationen, Gespräch im Modellansatz Podcast, Folge 239, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2021. S. Gassama, L. Harms, D. Schneiderhan, G. Thäter: Gruppenentscheidungen, Gespräch im Modellansatz Podcast, Folge 229, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020. L. Dietz, J. Jeppener, G. Thäter: Gastransport - Gespräch im Modellansatz Podcast, Folge 214, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT) 2019. A. Akboyraz, A. Castillo, G. Thäter: Poiseuillestrom - Gespräch im Modellansatz Podcast, Folge 215, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT) 2019.A. Bayer, T. Braun, G. Thäter: Binärströmung, Gespräch im Modellansatz Podcast, Folge 218, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. C. Brett, N. Wilhelm, G. Thäter: Fluglotsen, Gespräch im Modellansatz Podcast, Folge 196, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019. Weitere erwähnte Podcasts, Artikel und Vorträge J. Breitner, S. Ritterbusch: Incredible Proof Machine, Gespräch im Modellansatz Podcast, Folge 78, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. R. Pollandt, S. Ajuvo, S. Ritterbusch: Rechenschieber, Gespräch im Modellansatz Podcast, Folge 184, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. S. Ritterbusch: 0x5f3759df - ein WTF für mehr FPS, Vortrag auf der GPN20, 2022. M. Lösch, S. Ritterbusch: Smart Meter Gateway, Gespräch im Modellansatz Podcast, Folge 135, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2017. M. Fürst, S. Ritterbusch: Probabilistische Robotik, Gespräch im Modellansatz Podcast, Folge 95, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016. M. Heidelberger: Bilderkennung zeigt Wege als Klang, Presseinformation 029/2018, Karlsruher Institut für Technologie (KIT), 2018. N. Ranosch, G. Thäter: Klavierstimmung. Gespräch im Modellansatz Podcast, Folge 67, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2015.
    --------  
    1:42:14
  • Instandhaltung
    Gudrun unterhält sich in dieser Folge mit Waltraud Kahle. Sie war bis 2018 als außerplanmäßige Professorin in der Fakultät für Mathematik an der Otto von Guericke Universität in Magdeburg beschäftigt und war Mitglied des Instituts für Mathematische Stochastik. Das Thema des Gespräches ist das Forschungsthema von Waltraud: Statistik für zensierte Daten und in Abnutzungsprozessen sowie unvollständige Reparatur. Das Gespräch beginnt mit der Frage: Wie kann man Aussagen darüber treffen, wie lange technische Objekte oder auch Menschen "leben" . Ungefähre Aussagen hierzu für große Gruppen sind in der Industrie, der Demographie und Versicherungsmathematik und Medizin nötig. Es ist ein statistisches Problem, das sich in der Theorie auf eine (möglichst große) Anzahl von Beobachtungen bezieht aus denen dann Schlussfolgerungen abgeleitet werden, die für ähnliche Prozesse auch zu Vorhersagen dienen können. In der Praxis liegen aber in der Regel nur zensierte Daten vor, denn die Beobachtung muss abgebrochen werden, bevor die vollständige Information vorliegt. Ein alternativer Zugang ist es nun, nicht nach der Lebensdauer zu fragen sondern die der Lebensdauer zugrunde liegenden Abnutzungsprozesse zu modellieren (z.B. Verschleiß und Ermüdung). Hier verwendet man stochastische Prozesse, wie zum Beispiel den Wienerprozess. Grundlegende Eigenschaft des Wienerprozesses ist es, dass in jedem Zeitintervall ein normalverteilter Zuwachs erfolgt und alle diese Zuwächse voneinander unabhängig sind. Ein Ausfall erfolgt, wenn der Abnutzungsprozess ein vorgegebenes Niveau erstmalig erreicht. Man fragt sich folglich: Wie ist die Verteilung dieser "Erstüberschreitungszeit". Zur Vermeidung von Ausfällen können regelmäßig vorbeugende Instandhaltungsmaßnahmen durchgeführt werden, die das Abnutzungsniveau verringern. Das kann mit festen Intervallen oder nach vorgegebenen Ereignissen stattfinden. Zu DDR-Zeiten gab es z.B. ein Projekt, dass sicherstellen konnte, das notwendige Wartungsarbeiten von Mähdreschern nur im Winter erfolgten, damit sie zur Erntesaison voll einsatzfähig waren. Das statistische Modell muss Aussagen zu folgenden Fragen treffen können Einfluß der Instandhaltung auf die Lebensdauerverteilung, Definition von Kostenfunktionen der vorbeugenden Instandhaltung in Abhängigkeit vom Reparaturgrad, Kostenoptimale Instandhaltung. Andere Modellierungsmöglichkeiten bieten Gammaprozesse oder inhomogene Poissonprozesse. Im Gespräch gehen Gudrun und Waltraud auf Eigenschaften der Normalverteilung ein. Sie besprechen die Exponentialverteilung (diese hat eine konstante Ausfallrate). Das beschreibt elektronische Bauteile mit langer Lebensdauer sehr gut. Außerdem geht es um die Weibull-Verteilung. Diese passt auf Systeme mit sehr vielen Teilen (das Modell nimmt hier sogar unendlich viele Teile), die mit geringer Wahrscheinlichkeit ausfallen und wo das System ausfällt, sobald das erste Glied ausgefallen ist. Diese Verteilung hat die praktische Eigenschaft, dass die in der Medizin verwendeten Modelle der proportionalen Ausfallrate und der proportionalen Lebensdauer übereinstimmen. Waltraud engaiert sich im eLeMeNTe e.V.. Das ist der Landesverein Sachsen-Anhalt zur Förderung mathematisch, naturwissenschaftlich und technisch interessierter und talentierter Schülerinnen, Schüler und Studierender. Ein Ziel ist es, die Landesolympiaden Mathematik in Sachsen-Anhalt durchzuführen und Schülerinnen und Schüler mit speziellen Arbeitsgemeinschaften auf die Wettbewerbe vorzubereiten. Waltraud findet es spannend, dort oft überraschenden Ideen der Kinder und jungen Leute zu begegnen, die noch nicht in den ausgetretenen Denkpfaden unterwegs sind. Zur Geschichte der Mathe-Olympiaden finden sich auf Wikipedia folgende Informationen (die Gudrun aus eigenem Erleben bestätigen kann): "Die erste Mathematik-Olympiade in der DDR fand 1961/62 als „Olympiade Junger Mathematiker“ statt. Seitdem gab es dort ab der 5. Klassenstufe Schul- und Kreisolympiaden, ab der 7. Klassenstufe Bezirksolympiaden und ab der 10. Klassenstufe DDR-Olympiaden, an der aber auch sogenannte Frühstarter aus tieferen Klassenstufen teilnahmen. Der DDR-Ausscheid fand zunächst in der Woche vor Ostern jeden Jahres in der Jugendhochschule „Wilhelm Pieck“ bei Berlin, später im Mai in Erfurt statt. ... Auf allen Ebenen gab es zur Unterstützung begabter Schüler Mathematikzirkel....Nach der Wiedervereinigung Deutschlands entwickelte sich die Mathematikolympiade schnell zu einem bundesweiten Schülerwettbewerb. Seit 1994 ist der Mathematik-Olympiaden e.V. Träger des Wettbewerbs, der in Kooperation mit dem Talentförderzentrum Bildung & Begabung jährlich ausgeschrieben wird. Seit 1996 nehmen alle 16 Bundesländer an der Bundesrunde teil." Die Bundesrunde fand 1993, 1994 und 2001 in Magdeburg stattt. Referenzen und weitere Informationen Kahle, Waltraud; Mercier, Sophie; Paroissin, Christian: Mathematical models and methods in reliability set. volume 3: Degradation processes in reliability. In: Hoboken, NJ: Wiley, 2016 (Mathematics and statistics series) Kahle, Waltraud; Liebscher, Eckhard: Zuverlässigkeitsanalyse und Qualitätssicherung, Oldenbourg Wissenschaftsverlag, 2013 Elemente e.V. Landesolympiade Mathematik in Sachsen-Anhalt Matheolympiade in Deutschland
    --------  
    49:57
  • CSE
    Gudrun spricht in dieser Folge mit Anshuman Chauhan über sein Masterstudium Computational Sciences in Engineering (CSE) an der TU Braunschweig. CSE ist dort ein viersemestriger Masterstudiengang, der etwa zur Hälfte in Englisch und zur anderen Hälfte in Deutsch unterrichtet wird. Er ist an der Fakultät Architektur, Bauingenieurwesen und Umweltwissenschaften angesiedelt, kombiniert aber in der Ausbildung Ingenieurwissenschaften, Mathematik und angewandte Informatik. In gewisser Weise ist es eine konsequente Weiterentwicklung der Idee der Technischen Universitäten deutscher Prägung, dass heute solche interdisziplinären Studiengänge angeboten werden. So wie das heutige KIT wurden sie ja häufig als Polytechnische Schulen gegründet, in denen zunächst das was wir heute Maschinenbau nennen mathematisiert wurde, um mit der Entwicklung der Technik Schritt halten zu können. In zunehmenden Maße waren dann immer mehr technische Fächer ohne eigene Forschung und auch ohne eine Grundausbildung in Mathematik nicht mehr denkbar. Heute hält nun endgülitg zunächst die Computersimulation aber zunehmend auch die Benutzung von Algorithmischem Lernen und Big Data Einzug in die Ingenieurwissenschaften. Diese Entwicklung wird mit Spezialisierungen in der Mathematik, insbesondere in den Studiengängen Technomathematik, in Spezialisierungen in den Ingenieurwissenschaften, aber auch durch die Schaffung von neuartigen Studiengängen begleitet, die im Namen wie in der Ausbildung mindestens zwei, oft aber drei Standbeine haben: Mathematik, Informatik und eine technische Anwendung. Anshuman ist in Neu-Dehli aufgewachsen. Nach seiner Bachelorarbeit zu Finite Element Methoden hatte er sich weltweit nach Studiengängen umgeschaut, die mit Computersimulation zu tun haben - am liebsten mit Aerodynamik für Autos. Deutschland war für ihn dabei attraktiv, weil es renommierte Technische Universitäten hat und die Kosten nicht exorbitant sind. Er entschied sich für die TU in Braunschweig aufgrund eben dieses Renomees der deutschen TU9. Sie hat zur Zeit etwa 20.000 Studierende in fast 80 Studiengänge. Seit 2018 gibt es einen Exzellenzcluster in Luftfahrt und Metrologie und der DLR ist in der Nähe. Im Gespräch erläutert Anshuman, dass er mit der Entscheidung für Braunschweig und für diesen Studiengang sehr zufrieden ist. Er ist nun nach erfolgreichem Abschluss und einiger Zeit in der Wirtschaft seit 2020 am KIT im Graduiertenkolleg SiMet, wo der Kontakt mit dem Podcast zustande kam. Braunschweig hat ein richtiges Stadtleben, das von den vielen Studierenden dort mit geprägt ist. Anshuman ist dort in einem Studentenwohnheim untergekommen und hatte sofort sozial Anschluss. In dem von ihm in Braunschweig belegten Masterprogramm CSE ist jedes Semester aufgeteilt zwischen Ingenieurfächern, Mathematik und Informatik. Zum Beispiel die Fächer Strömungsdynamik und Thermodynamik zusammen mit partiellen Differentialgleichungen in der Mathematik und Visualisierung im Informatikteil. Später sind dann Vertiefungskurse in z.B. Maschinenbau, Elektrotechnik, Bauingenieurwesen oder Informatik wählbar. Die Numerischen Methoden in der Aerodynamik z.B. waren sehr praxisnah. Er wollte seine Masterarbeit unbedingt in der Industrie schreiben, um Erfahrung in einem Unternehmen zu sammeln. Er sah aber sehr schnell, dass richtig Deutsch zu lernen dafür eine notwendige Voraussetzung ist. Deshalb nahm er sich ein Semester Zeit, um die Sprache noch besser zu üben und außerdem einige für ihn sehr interessante Kurse zu belegen, zu denen er vorher keine Zeit gehabt hatte. Überdies hat er auch noch spanisch belegt. Mit der deutschen Bewerbung hat es schließlich mit einer Masterarbeit in Stuttgart geklappt. Der Wechsel von Braunschweig in Norddeutschland nach Stuttgart in Süddeutschland war für ihn sehr spürbar - es ist einfach ein anderer Schlag Menschen. In der Firma gibt es natürlich vorgeschriebene Prozesse, in die man sich erst einarbeiten muss. Sie bringen aber eine gewisse Robustheit in die Entwicklung. Als Masterstudent hatte er trotzdem genug Freiheit und eine tolle Betreuung. In der Industrietätigkeit nach seinem Masterabschluss musste er sich oft schnell in die Probleme einarbeiten und konnte nicht so gründlich, sein wie er es aus der Studienzeit gewohnt war. Er beschäftigte sich mit der Optimierung am Einlasskanal in einem Motor mit Hilfe von Strömungsrechnung (CFD). D.h. er hatte sein ursprüngliches Traumziel eigentlich erreicht. Trotzdem war es ihm dann zu viel Routine und er wollte noch mehr über ein Zukunftsthema für Autos lernen: konkret über Batterien. Das kann er nun während der Promotion im Rahmen von SiMET tun. Hier ist er wieder in einem Umfeld von anderen jungen Menschen, die sehr unterschiedliche Masterabschlüsse erworben haben und Mathematik, Computer und die Anwendungsthemen alle verstehen müssen. Podcasts F. Blendlin, G. Thaeter: Fernstudium Maschinenbau, Gespräch im Modellansatz Podcast, Folge 233, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2020. S. Carelli, G. Thäter: Batteries, Gespräch im Modellansatz Podcast, Folge 211, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2019.Y. Cai, S. Dhanrajani, G. Thäter: Mechanical Engineering, Gespräch im Modellansatz Podcast, Folge 176, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018.
    --------  
    41:31
  • Mentoring
    Gudrun hatte 2018 mit Carla Cederbaum über mathematische Konzepte gesprochen, mit denen man z.B. den Schwerpunkt von Sternen bestimmen kann. Im April 2022 trafen sich beide erneut zum Gespräch - diesmal per Videokonferenz. Carla ist inzwischen Professorin an der Uni Tübingen in der AG Geometrische Analysis, Differentialgeometrie und Relativitätstheorie und erhielt den Tübinger Preis für Wissenschaftskommunikation des Jahres 2022. Seit 2021 arbeiten Gudrun und Carla zusammen bei der Gestaltung der Zeitschrift Mitteilungen der Deutschen Mathematiker Vereinigung (MDMV). Gudrun ist 2021-24 als Herausgeberin verantwortlich für die Inhalte und hat neben drei anderen Kolleginnen und Kollegen auch Carla als Mitherausgeberin gewonnen. Im Gespräch geht es um das Praxishandbuch zum Mentoring von Frauen in der mathematischen Forschung, das unter der Creative Commons Lizenz CC-BY-SA 4.0 allen Interessierten zur Verfügung steht und an dessen Weiterentwicklung (auch aufgrund der offenen Lizenz) alle mitarbeiten können. Das Handbuch wurde von Carla Cederbaum, Sophia Jahns und Anna Wienhard im Rahmen des Schwerpunktprogramms SPP2026 Geometrie im Unendlichen der Deutschen Forschungsgemeinschaft (DFG) verfasst und basiert auf den Erfahrungen mit dem Math Ment♀ring Programm an der Universität Tübingen unter der Leitung von Carla einerseits und dem UPSTREAM Mentoring Netzwerk an der Universität Heidelberg unter der Leitung von Anna (und Michael Winckler) andererseits. (*) Mentoring gibt es heutzutage in vielen Zusammenhängen und kann konkret sehr viel Unterschiedliches bedeuten. Die Idee, ein spezielles Mentoring für Frauen an ihrem Fachbereich in Tübingen anzubieten, erwuchs aus Carlas eigenen Erfahrungen. Seit ihrem Studium in Freiburg erlebte sie, wie die Tatsache, einer Minderheit im Fach anzugehören, Frauen auf vielfältige Weise dabei behindert, sich in der Mathematik kompetent und in der Fachkultur heimisch zu fühlen. Inzwischen ist gut mit konkreten Zahlen belegt, dass beim Übergang von jeder Entwicklungsstufe auf die nächste in der akademischen Laufbahn mehr Frauen als Männer das Fach verlassen. D.h. bei jedem Karriereschritt sinkt der Anteil von Frauen. So gehen Talente verloren und das Fach Mathematik verliert als Ganzes. In vielen Universitäten hat man das inzwischen als Problem erkannt, dem man strukturell begegnen möchte, aber es gibt oft eine gewisse Ratlosigkeit, wie das geschehen kann. Carla und ihre Mitstreiterinnen sehen als einen Baustein in der Lösung dieses Problems die Wichtigkeit des Austauschs unter Frauen in einem geschützten Rahmen. Dies ist ein effektiver und vergleichsweise kostengünsitger Ansatz. Es geht nicht darum, Frauen zu einer Karriere in der Mathematik zu überreden, sondern diejenigen zu finden und zu unterstützen, die Lust und Talent dazu haben. Unterschiedliche Ausgangssituationen und fehlende Privilegien können so abgemildert werden. An der Duke University baute Carla erstmals Mentoring von und für Frauen in der Mathematik auf, u.a. mit Ingrid Daubechies. Für Tübingen hat sie daraus das Format übernommen, dass die Mentorin der Mentee in der Regel eine Stufe in der Karriereleiter voraus ist. So kann man sich noch recht einfach hineindenken, wie man selbst noch vor kurzem gedacht und gearbeitet hat - außerdem ist es ideal, wenn man selbst als Mentee in einem weiteren "Gespann" die "andere Seite" des Mentorings erlebt. In jedem Fall ist es hilfreich, wenn Mentorinnen eine Schulung oder zumindest eine Handreichung bekommen, bevor sie diese Rolle übernehmen. Im Handbuch ist erprobtes Material für die Schulung der Mentorinnen zusammengetragen (inkl. aller möglicher Vorlagen für Anschreiben, Aushänge etc.). Eine ausführliche und weiter wachsende Literatursammlung zu Mentoring und Gender Studies rundet das Material ab. Die grundlegende Struktur des Mentorings ruht außerdem auf folgenden Prinzipien: Vertraulichkeit zwischen Mentor*in und Mentee geht in beide Richtungen. Die Individualität der Mentee zu respektieren ist oberstes Gebot. Regelmäßige Treffen von Mentor*in und Mentee helfen, Vertrauen aufzubauen - möglichst bevor ernsthaftere Probleme auftreten. In Tübingen dauert die Mentorinnenschulung 1/2 Tag und konzentriert sich auf die Frage: Was ist Mentoring und was nicht und wie kann ich das konkret gestalten. In einem ersten Teil der Schulung werden typische Argumente und belegte Fakten erörtert, die für und gegen die Notwendigkeit der Unterstützung von Frauen in der Mathematik sprechen. Dafür hat sich das Format der Fishbowl-Diskussion zwischen zwei ausgelosten Gruppen bewährt. Danach werden offenes und proaktives Zuhören geübt und Antworten auf typische Mentoringfragen in unterschiedlichen Karrierestufen gesammelt. Das geschieht in 3er-Gruppen mit den Rollen Mentee/Mentorin/Beobachterin. Jede Gruppe zieht zufällig eine Vignette und spielt ein Gespräch zur dort geschilderten Situation durch. Anschließend erfolgt jeweils eine Besprechung dazu, wie die Personen die Gespräche in den unterschiedlichen Rollen wahrgenommen haben, was gut funktioniert hat und was vielleicht nicht so gut gelaufen ist. Danach werden die Rollen getauscht. Schließlich wird im dritten Teil der Schulung das erste Treffen mit einer Mentee vorbereitet, um eventuelle Nervosität oder Anspannung abzubauen. Man arbeitet in Paaren, um sich das erste Treffen möglichst genau vorzustellen. Hierbei werden die Paare von Schlüsselfragen geleitet. Auch werden Anlaufstellen für über das Mentoring hinausgehende Fragestellungen vorgestellt. Im Handbuch sind zu allen Teilen der Schulung viele Fallbeispiele und Schlüsselfragen gesammelt. Daneben finden sich Vorlagen für Werbung, Organisatorisches zu Treffen und zur Kontaktaufnahme. Es sind aber auch Verweise auf Ressourcen gesammelt, falls es ernsthafte Probleme gibt, die im Mentoringgespräch nicht gelöst werden können (wie z.B. Prüfungsangst, finanzielle Sorgen oder eine psychische Krise). Es wird dafür sensibilisiert, wie man erkennen kann, für welche Fragen man selbst eine kompetente Ansprechperson ist und dass es im Mentoring nicht darum geht ein "Mini-me" zu erziehen - nicht alles was für mich funktioniert hat, ist auch für das Gegenüber gut. Deshalb ist es wichtig, die Werte des Gegenübers herausfinden und dann die Zielsetzung der gemeinsamen Zeit möglichst danach auszurichten. Das Mentoring in Tübingen hat 2014/15 begonnen - der Übergang zur Postdoc-Phase scheint vor Ort das größte Leck zu sein. Als Gründe nennen die Mentees, dass eine akademische Laufbahn sich schwer mit Familiengründung und Partnerschaft vertrage, wenn in der Postdoc-Phase 2-3 längere Auslansdaufenthalte oder wenigstens Wechsel zwischen deutschen Universitäten erwartet werden. Gudrun hat für den Podcast mit drei Frauen gesprochen, die in Tübingen am Mentoringprogramm teilgenommen haben und inzwischen auf der nächsten Karrierestufe arbeiten. Das Gespräch mit Polyxeni Spiloti ist schon veröffentlicht. Die Gespräche mit Cornelia Vogel und Alix Richter folgen bald. Cornelia und Alix waren als Studentinnen Mentees und haben sich jeweils für eine Promotion entschieden, an der sie zur Zeit des Gespräches in Tübingen bzw. Paderborn arbeiteten. (*) Zusätzliche Förderung erhielt das Projekt durch die Duke University, das Zukunftskonzept der Universität Tübingen (DFG, ZUK 63) und durch das Athene-Mentoring Programm, Universität Tübingen, die HGS MathComp am IWR Heidelberg, den Exzellenzcluster STRUCTURES und die Research Station Geometry & Dynamics der Universität Heidelberg. Referenzen und weitere Informationen C. Cederbaum: Wo liegt der Schwerpunkt eines Sternes? Vortrag Faszination Astronomie Online vom 4. Februar 2021. Mentoring Material Podcasts C. Cederbaum, G. Thäter: Sternenschwerpunkt, Gespräch im Modellansatz Podcast, Folge 172, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018. P. Spilioti, G. Thaeter: Spectral Geometry, Gespräch im Modellansatz Podcast, Folge 247, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2022.
    --------  
    34:56

Weitere Wissenschaft Podcasts

Über Modellansatz

Bei genauem Hinsehen finden wir die Naturwissenschaft und besonders Mathematik überall in unserem Leben, vom Wasserhahn über die automatischen Temporegelungen an Autobahnen, in der Medizintechnik bis hin zum Mobiltelefon. Woran die Forscher, Absolventen und Lehrenden in Karlsruhe gerade tüfteln, erfahren wir hier aus erster Hand.
Podcast-Website

Hören Sie Modellansatz, radioWissen und viele andere Podcasts aus aller Welt mit der radio.de-App

Hol dir die kostenlose radio.de App

  • Sender und Podcasts favorisieren
  • Streamen via Wifi oder Bluetooth
  • Unterstützt Carplay & Android Auto
  • viele weitere App Funktionen
Rechtliches
Social
v7.2.0 | © 2007-2025 radio.de GmbH
Generated: 1/18/2025 - 9:05:24 AM