Sport Livestreams für Fußball Bundesliga, DFB-Pokal, Champions League, Europa League, NFL, NBA & Co.
Jetzt neu und kostenlos: Sport Live bei radio.de. Egal ob 1. oder 2. deutsche Fußball Bundesliga, DFB-Pokal, UEFA Fußball Europameisterschaft, UEFA Champions League, UEFA Europa League, Premier League, NFL, NBA oder die MLB - seid live dabei mit radio.de.
Neuroscience and artificial intelligence work better together. Brain inspired is a celebration and exploration of the ideas driving our progress to understand i...
BI 203 David Krakauer: How To Think Like a Complexity Scientist
Support the show to get full episodes, full archive, and join the Discord community.
The Transmitter is an online publication that aims to deliver useful information, insights and tools to build bridges across neuroscience and advance research. Visit thetransmitter.org to explore the latest neuroscience news and perspectives, written by journalists and scientists.
Read more about our partnership.
Sign up for the “Brain Inspired” email alerts to be notified every time a new “Brain Inspired” episode is released.
David Krakauer is the president of the Santa Fe Institute, where their mission is officially "Searching for Order in the Complexity of Evolving Worlds." When I think of the Santa Fe institute, I think of complexity science, because that is the common thread across the many subjects people study at SFI, like societies, economies, brains, machines, and evolution. David has been on before, and I invited him back to discuss some of the topics in his new book The Complex World: An Introduction to the Fundamentals of Complexity Science.
The book on the one hand serves as an introduction and a guide to a 4 volume collection of foundational papers in complexity science, which you'll David discuss in a moment. On the other hand, The Complex World became much more, discussing and connecting ideas across the history of complexity science. Where did complexity science come from? How does it fit among other scientific paradigms? How did the breakthroughs come about? Along the way, we discuss the four pillars of complexity science - entropy, evolution, dynamics, and computation, and how complexity scientists draw from these four areas to study what David calls "problem-solving matter." We discuss emergence, the role of time scales, and plenty more all with my own self-serving goal to learn and practice how to think like a complexity scientist to improve my own work on how brains do things. Hopefully our conversation, and David's book, help you do the same.
David's website.
David's SFI homepage.
The book: The Complex World: An Introduction to the Fundamentals of Complexity Science.
The 4-Volume Series: Foundational Papers in Complexity Science.
Mentioned:
Aeon article: Problem-solving matter.
The information theory of individuality.
Read the transcript.
0:00 - Intro
3:45 - Origins of The Complex World
20:10 - 4 pillars of complexity
36:27 - 40s to 70s in complexity
42:33 - How to proceed as a complexity scientist
54:32 - Broken symmetries
1:02:40 - Emergence
1:13:25 - Time scales and complexity
1:18:48 - Consensus and how ideas migrate
1:29:25 - Disciplinary matrix (Kuhn)
1:32:45 - Intelligence vs. life
--------
1:46:03
BI 202 Eli Sennesh: Divide-and-Conquer to Predict
Support the show to get full episodes, full archive, and join the Discord community.
The Transmitter is an online publication that aims to deliver useful information, insights and tools to build bridges across neuroscience and advance research. Visit thetransmitter.org to explore the latest neuroscience news and perspectives, written by journalists and scientists.
Read more about our partnership.
Sign up for the “Brain Inspired” email alerts to be notified every time a new Brain Inspired episode is released.
Eli Sennesh is a postdoc at Vanderbilt University, one of my old stomping grounds, currently in the lab of Andre Bastos. Andre’s lab focuses on understanding brain dynamics within cortical circuits, particularly how communication between brain areas is coordinated in perception, cognition, and behavior. So Eli is busy doing work along those lines, as you'll hear more about. But the original impetus for having him on his recently published proposal for how predictive coding might be implemented in brains. So in that sense, this episode builds on the last episode with Rajesh Rao, where we discussed Raj's "active predictive coding" account of predictive coding. As a super brief refresher, predictive coding is the proposal that the brain is constantly predicting what's about the happen, then stuff happens, and the brain uses the mismatch between its predictions and the actual stuff that's happening, to learn how to make better predictions moving forward. I refer you to the previous episode for more details. So Eli's account, along with his co-authors of course, which he calls "divide-and-conquer" predictive coding, uses a probabilistic approach in an attempt to account for how brains might implement predictive coding, and you'll learn more about that in our discussion. But we also talk quite a bit about the difference between practicing theoretical and experimental neuroscience, and Eli's experience moving into the experimental side from the theoretical side.
Eli's website.
Bastos lab.
Twitter: @EliSennesh
Related papers
Divide-and-Conquer Predictive Coding: a Structured Bayesian Inference Algorithm.
Related episode:
BI 201 Rajesh Rao: Active Predictive Coding.
Read the transcript.
0:00 - Intro
3:59 - Eli's worldview
17:56 - NeuroAI is hard
24:38 - Prediction errors vs surprise
55:16 - Divide and conquer
1:13:24 - Challenges
1:18:44 - How to build AI
1:25:56 - Affect
1:31:55 - Abolish the value function
--------
1:38:11
BI 201 Rajesh Rao: From Predictive Coding to Brain Co-Processors
Support the show to get full episodes, full archive, and join the Discord community.
Today I'm in conversation with Rajesh Rao, a distinguished professor of computer science and engineering at the University of Washington, where he also co-directs the Center for Neurotechnology. Back in 1999, Raj and Dana Ballard published what became quite a famous paper, which proposed how predictive coding might be implemented in brains. What is predictive coding, you may be wondering? It's roughly the idea that your brain is constantly predicting incoming sensory signals, and it generates that prediction as a top-down signal that meets the bottom-up sensory signals. Then the brain computes a difference between the prediction and the actual sensory input, and that difference is sent back up to the "top" where the brain then updates its internal model to make better future predictions.
So that was 25 years ago, and it was focused on how the brain handles sensory information. But Raj just recently published an update to the predictive coding framework, one that incorporates actions and perception, suggests how it might be implemented in the cortex - specifically which cortical layers do what - something he calls "Active predictive coding." So we discuss that new proposal, we also talk about his engineering work on brain-computer interface technologies, like BrainNet, which basically connects two brains together, and like neural co-processors, which use an artificial neural network as a prosthetic that can do things like enhance memories, optimize learning, and help restore brain function after strokes, for example. Finally, we discuss Raj's interest and work on deciphering an ancient Indian text, the mysterious Indus script.
Raj's website.
Twitter: @RajeshPNRao.
Related papers
A sensory–motor theory of the neocortex.
Brain co-processors: using AI to restore and augment brain function.
Towards neural co-processors for the brain: combining decoding and encoding in brain–computer interfaces.
BrainNet: A Multi-Person Brain-to-Brain Interface for Direct Collaboration Between Brains.
Read the transcript.
0:00 - Intro
7:40 - Predictive coding origins
16:14 - Early appreciation of recurrence
17:08 - Prediction as a general theory of the brain
18:38 - Rao and Ballard 1999
26:32 - Prediction as a general theory of the brain
33:24 - Perception vs action
33:28 - Active predictive coding
45:04 - Evolving to augment our brains
53:03 - BrainNet
57:12 - Neural co-processors
1:11:19 - Decoding the Indus Script
1:20:18 - Transformer models relation to active predictive coding
--------
1:37:22
BI 200 Grace Hwang and Joe Monaco: The Future of NeuroAI
Support the show to get full episodes, full archive, and join the Discord community.
Joe Monaco and Grace Hwang co-organized a recent workshop I participated in, the 2024 BRAIN NeuroAI Workshop. You may have heard of the BRAIN Initiative, but in case not, BRAIN is is huge funding effort across many agencies, one of which is the National Institutes of Health, where this recent workshop was held. The BRAIN Initiative began in 2013 under the Obama administration, with the goal to support developing technologies to help understand the human brain, so we can cure brain based diseases.
BRAIN Initiative just became a decade old, with many successes like recent whole brain connectomes, and discovering the vast array of cell types. Now the question is how to move forward, and one area they are curious about, that perhaps has a lot of potential to support their mission, is the recent convergence of neuroscience and AI... or NeuroAI. The workshop was designed to explore how NeuroAI might contribute moving forward, and to hear from NeuroAI folks how they envision the field moving forward. You'll hear more about that in a moment.
That's one reason I invited Grace and Joe on. Another reason is because they co-wrote a position paper a while back that is impressive as a synthesis of lots of cognitive sciences concepts, but also proposes a specific level of abstraction and scale in brain processes that may serve as a base layer for computation. The paper is called Neurodynamical Computing at the Information Boundaries, of Intelligent Systems, and you'll learn more about that in this episode.
Joe's NIH page.
Grace's NIH page.
Twitter:
Joe: @j_d_monaco
Related papers
Neurodynamical Computing at the Information Boundaries of Intelligent Systems.
Cognitive swarming in complex environments with attractor dynamics and oscillatory computing.
Spatial synchronization codes from coupled rate-phase neurons.
Oscillators that sync and swarm.
Mentioned
A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications.
Recalling Lashley and reconsolidating Hebb.
BRAIN NeuroAI Workshop (Nov 12–13)
NIH BRAIN NeuroAI Workshop Program Book
NIH VideoCast – Day 1 Recording – BRAIN NeuroAI Workshop
NIH VideoCast – Day 2 Recording – BRAIN NeuroAI Workshop
Neuromorphic Principles in Biomedicine and Healthcare Workshop (Oct 21–22)
NPBH 2024
BRAIN Investigators Meeting 2020 Symposium & Perspective Paper
BRAIN 2020 Symposium on Dynamical Systems Neuroscience and Machine Learning (YouTube)
Neurodynamical Computing at the Information Boundaries of Intelligent Systems | Cognitive Computation
NSF/CIRC
Community Infrastructure for Research in Computer and Information Science and Engineering (CIRC) | NSF - National Science Foundation
THOR Neuromorphic Commons - Matrix: The UTSA AI Consortium for Human Well-Being
Read the transcript.
0:00 - Intro
25:45 - NeuroAI Workshop - neuromorphics
33:31 - Neuromorphics and theory
49:19 - Reflections on the workshop
54:22 - Neurodynamical computing and information boundaries
1:01:04 - Perceptual control theory
1:08:56 - Digital twins and neural foundation models
1:14:02 - Base layer of computation
--------
1:37:11
BI 199 Hessam Akhlaghpour: Natural Universal Computation
Support the show to get full episodes, full archive, and join the Discord community.
The Transmitter is an online publication that aims to deliver useful information, insights and tools to build bridges across neuroscience and advance research. Visit thetransmitter.org to explore the latest neuroscience news and perspectives, written by journalists and scientists.
Read more about our partnership.
Sign up for the “Brain Inspired” email alerts to be notified every time a new “Brain Inspired” episode is released: https://www.thetransmitter.org/newsletters/
To explore more neuroscience news and perspectives, visit thetransmitter.org.
Hessam Akhlaghpour is a postdoctoral researcher at Rockefeller University in the Maimon lab. His experimental work is in fly neuroscience mostly studying spatial memories in fruit flies. However, we are going to be talking about a different (although somewhat related) side of his postdoctoral research. This aspect of his work involves theoretical explorations of molecular computation, which are deeply inspired by Randy Gallistel and Adam King's book Memory and the Computational Brain. Randy has been on the podcast before to discuss his ideas that memory needs to be stored in something more stable than the synapses between neurons, and how that something could be genetic material like RNA. When Hessam read this book, he was re-inspired to think of the brain the way he used to think of it before experimental neuroscience challenged his views. It re-inspired him to think of the brain as a computational system. But it also led to what we discuss today, the idea that RNA has the capacity for universal computation, and Hessam's development of how that might happen. So we discuss that background and story, why universal computation has been discovered in organisms yet since surely evolution has stumbled upon it, and how RNA might and combinatory logic could implement universal computation in nature.
Hessam's website.
Maimon Lab.
Twitter: @theHessam.
Related papers
An RNA-based theory of natural universal computation.
The molecular memory code and synaptic plasticity: a synthesis.
Lifelong persistence of nuclear RNAs in the mouse brain.
Cris Moore's conjecture #5 in this 1998 paper.
(The Gallistel book): Memory and the Computational Brain: Why Cognitive Science Will Transform Neuroscience.
Related episodes
BI 126 Randy Gallistel: Where Is the Engram?
BI 172 David Glanzman: Memory All The Way Down
Read the transcript.
0:00 - Intro
4:44 - Hessam's background
11:50 - Randy Gallistel's book
14:43 - Information in the brain
17:51 - Hessam's turn to universal computation
35:30 - AI and universal computation
40:09 - Universal computation to solve intelligence
44:22 - Connecting sub and super molecular
50:10 - Junk DNA
56:42 - Genetic material for coding
1:06:37 - RNA and combinatory logic
1:35:14 - Outlook
1:42:11 - Reflecting on the molecular world
Neuroscience and artificial intelligence work better together. Brain inspired is a celebration and exploration of the ideas driving our progress to understand intelligence. I interview experts about their work at the interface of neuroscience, artificial intelligence, cognitive science, philosophy, psychology, and more: the symbiosis of these overlapping fields, how they inform each other, where they differ, what the past brought us, and what the future brings. Topics include computational neuroscience, supervised machine learning, unsupervised learning, reinforcement learning, deep learning, convolutional and recurrent neural networks, decision-making science, AI agents, backpropagation, credit assignment, neuroengineering, neuromorphics, emergence, philosophy of mind, consciousness, general AI, spiking neural networks, data science, and a lot more. The podcast is not produced for a general audience. Instead, it aims to educate, challenge, inspire, and hopefully entertain those interested in learning more about neuroscience and AI.