Partner im RedaktionsNetzwerk Deutschland
PodcastsTechnologieData Science Deep Dive
Höre Data Science Deep Dive in der App.
Höre Data Science Deep Dive in der App.
(256.086)(250.186)
Sender speichern
Wecker
Sleeptimer

Data Science Deep Dive

Podcast Data Science Deep Dive
INWT Statistics GmbH
Wir machen Data Science. Und in unserem Podcast Data Science Deep Dive reden wir darüber. Du bist ebenfalls Data Scientist oder interessierst dich für Daten, M...

Verfügbare Folgen

5 von 70
  • #69: AI Agents verstehen und evaluieren mit Matthäus Deutsch
    AI Agents sind mehr als nur Chatbots – aber wie bewertet man sie richtig? Wir sprechen über die Herausforderungen beim Testen von AI im Kundenservice, warum falsche API-Parameter ins Chaos führen und wieso "mysteriöser Fleischeintopf" ein PR-Desaster wurde. Matthäus Deutsch von Parloa berichtet, wie flexible Plattformintegrationen und evaluative Ansätze (z.B. assertion-based Testing und Simulationen) den Einsatz von AI Agents vorantreiben. Außerdem: welche Metriken wirklich zählen, was Multi-Agent-Setups leisten und warum der Preisverfall bei Open-Source-Modellen das Game verändert.    Zusammenfassung AI Agents erweitern klassische Chatbots im Kundenservice, insbesondere im Telefonbereich, durch GenAI-basierte, dynamische Lösungen Parloa demonstriert flexible Plattformintegrationen und den Einsatz von Evaluationsmethoden wie assertion-based Testing und Simulationen Die Evaluation von AI Agents erfordert spezielles Benchmarking auf Plattform- und individueller Ebene Typische Herausforderungen sind Integrationsprobleme, fehlerhafte API-Calls und unzureichendes Instruction Following Tests erfolgen sowohl auf Konversationsebene als auch durch deterministische Ansätze und LLMs als Judge Es müssen komplexe Metriken und Trade-offs beachtet werden, wobei häufig binäre Testansätze aggregiert werden Schnelle Updates auf neue Modellversionen sind möglich, allerdings steigen langfristig die Kosten durch umfangreiche Testzyklen Innovationen wie optimierte Speech-to-Speech-Technologien und Open-Source-Lösungen (z. B. DeepSeek) bieten Potenzial zur Kostenreduktion Der Einsatz von Operatoren-Modellen und Tool-Integrationen ermöglicht auch die Anbindung an Legacy-Systeme, z.B. SAP Ziel ist es, den Automatisierungsanteil im Kundenservice zu erhöhen und eine Balance zwischen bewährter Qualität und neuen Features zu finden Links Matthäus Deutsch auf LinkedIn: https://www.linkedin.com/in/matth%C3%A4us-d-928864ab/ Parloa Contact-Center-AI-Plattform https://www.parloa.com/de/ Stellenangebote bei Parloa https://www.parloa.com/company/careers/#jobs #55: Alle machen XGBoost, aber was macht eigentlich XGBoost? Mit Matthäus Deutsch https://www.podbean.com/ew/pb-6gvc6-16d5018 #64: Predictive LLMs: Übertreffen Open-Source-Modelle jetzt OpenAI und XGBoost bei Preisprognosen? https://www.podbean.com/ew/pb-m5qr2-17c425d heise online: "Aromatisches" Chloramingas, Eintopf aus Menschenfleisch: KI-Rezepte irritieren https://www.heise.de/news/Aromatisches-Chlorgas-Eintopf-aus-Menschenfleisch-KI-irritiert-mit-Rezepten-9242991.html Feedback, Fragen oder Themenwünsche gern an [email protected]
    --------  
    47:22
  • #68: CI/CD für Daten: Datenversionierung für stabile & nachvollziehbare Systeme
    Daten(banken) versionieren – klingt maximal unsexy, spart aber Stress im Deployment. Warum ohne Schema-Versionierung selbst kleine Änderungen große Probleme verursachen und was ORMs, Flyway oder Liquibase damit zu tun haben, erfahrt ihr hier. Daten historisieren ist ein Must-have für Compliance, Reproduzierbarkeit und Modellierung. Aber Achtung: Nicht jede Lösung passt für jede Datenbank und den Live-Betrieb. Wir geben Tipps, wie ihr eure Datenprodukte systematisch und effizient im Griff behaltet. **Zusammenfassung** Schema-Versionierung ist essenziell, um Änderungen an Datenbanken nachvollziehbar und reibungslos ins Deployment einzubinden Fehlende Versionierung kann zu kaputten Prozessen führen, wenn Schema-Änderungen nicht dokumentiert und automatisiert umgesetzt werden Werkzeuge wie ORMs, Flyway oder Liquibase helfen dabei, Änderungen an Datenbankschemata strukturiert zu verwalten Historisierung von Daten ist für Compliance, Reproduzierbarkeit und Modellierung entscheidend   Ansätze zur Datenhistorisierung: Append-only-Strategien vs. System-Versionierung Herausforderungen: Performance-Engpässe, hohe Pflegekosten und Kompatibilitätsprobleme je nach Datenbank und Migrationstool   Best Practices: Versionierung systematisch einführen, Automatisierung priorisieren und sicherstellen, dass Downgrades funktionieren.   **Links** #58: Arm, aber sexy: Data Warehousing at Scale ohne Budget https://www.podbean.com/ew/pb-gywt4-1719aef #52: In-process Datenbanken und das Ende von Big Data https://www.podbean.com/ew/pb-tekgi-16896e4 #36: Der Data Mesh Hype und was davon bleibt https://www.podbean.com/ew/pb-7er7v-15080c1 Flyway: https://www.red-gate.com/products/flyway/ Liquibase: https://www.liquibase.com/ Alembic (für SQLAlchemy): https://alembic.sqlalchemy.org/en/latest/ MariaDB: https://mariadb.org/ ClickHouse: https://clickhouse.com/ Fragen, Feedback und Themenwünsche gern an [email protected]
    --------  
    41:29
  • #67: "It works on my machine" war gestern – Docker Best Practices für Data Science
    Dieser Satz "it works on my machine" hat IT-Teams und Data Scientists lange Nerven gekostet. Früher war Deployment ein mühsames Zusammenspiel aus Setup-Anleitungen, inkompatiblen Umgebungen und endlosen Rückfragen. Docker bringt endlich Ordnung ins Chaos: Anwendungen laufen isoliert, reproduzierbar und unabhängig vom Host-System. Warum Containerisierung für Data Science ein echter Gamechanger ist und welche Best Practices du kennen solltest, erfährst du in dieser Folge!   Zusammenfassung  Früher war Deployment umständlich: lange Setup-Anleitungen, inkompatible Umgebungen, viele Rückfragen  Virtuelle Maschinen haben das Problem teilweise gelöst, sind aber ressourcenintensiv und unflexibel Data Scientists arbeiten oft mit R/Python, was IT-Abteilungen vor Herausforderungen stellt Fehlende Reproduzierbarkeit führt zu Stress, Verzögerungen und hohem Kommunikationsaufwand Docker schafft eine standardisierte, isolierte und reproduzierbare Umgebung für Anwendungen Container laufen direkt auf dem Host-OS, sind schlanker als VMs und starten schneller Mit Dockerfiles lassen sich Umgebungen als Code definieren und automatisch deployen Best Practices: schlanke Base-Images, .dockerignore, nur benötigte Abhängigkeiten installieren Automatisierung mit CI/CD-Pipelines beschleunigt den Entwicklungs- und Deploy-Prozess Containerisierung ist für moderne Data-Science-Workflows unverzichtbar und spart IT sowie Data Science viel Zeit Links Offizielle Docker Dokumentation https://docs.docker.com/ Docker Hub https://hub.docker.com/ [Blog] Die Welt der Container: Einführung in Docker https://www.inwt-statistics.de/blog/die-welt-der-container-einfuehrung-in-docker [Podcast] #14: Kubernetes https://www.podbean.com/ew/pb-m5ggz-13454c7 [Podcast] #59: Besser mit Helm: komplexe Deployments einfach(er) umsetzen https://www.podbean.com/ew/pb-txhnf-17314de [Video] Solomon Hykes stellt Docker vor (2013) "The future of Linux Containers" https://www.youtube.com/watch?v=wW9CAH9nSLs&t=158s Fragen, Feedback und Themenwünsche gern an [email protected]
    --------  
    34:53
  • #66: Developer vs. Data Scientist mit Andy Grunwald und Wolfgang Gassler
    Warum knirscht es immer wieder zwischen Data Scientists und Developern? In dieser Episode holen wir uns Verstärkung von Andy und Wolfi vom Engineering Kiosk Podcast um dieser Frage auf den Grund zu gehen. Wir reden über typische Klischees und warum diese zu Konflikten führen. Gemeinsam sprechen wir darüber, welche Skills helfen, damit beide Spezies am Ende harmonisch zusammenarbeiten können – statt sich gegenseitig auszubremsen. Zusammenfassung Klischees und Konflikte: Stereotype über Data Scientists (Jupyter-Fans, Doktortitel) und Developer (Perfektionismus, Black-Box-Furcht) Teamorganisation: Cross-funktionale Teams vs. getrennte Abteilungen (Vor- und Nachteile, Agenturmodell) Typische Herausforderungen: Übergabe von Prototypen an die Entwicklung, Verständnis von SLAs/Responsezeiten, Datenbankauswahl Skill-Set und Zusammenarbeit: Generalistisches Grundwissen in DevOps und Softwarearchitektur, offenes Mindset Links Engineering Kiosk Podcast: https://engineeringkiosk.dev/ Andy Grunwald auf LinkedIn: https://www.linkedin.com/in/andy-grunwald-09aa265a/ Wolfgang Gassler auf LinkedIn: https://www.linkedin.com/in/wolfganggassler/ [Engineering Kiosk] #179 MLOps: Machine Learning in die Produktion bringen mit Michelle Golchert und Sebastian Warnholz https://engineeringkiosk.dev/podcast/episode/179-mlops-machine-learning-in-die-produktion-bringen-mit-michelle-golchert-und-sebastian-warnholz/ [Engineering Kiosk] #178 Code der bewegt: Infotainmentsysteme auf Kreuzfahrtschiffen mit Sebastian Hammerl https://engineeringkiosk.dev/podcast/episode/178-code-der-bewegt-infotainmentsysteme-auf-kreuzfahrtschiffen-mit-sebastian-hammerl/ [Engineering Kiosk] #177 Stream Processing & Kafka: Die Basis moderner Datenpipelines mit Stefan Sprenger https://engineeringkiosk.dev/podcast/episode/177-stream-processing-kafka-die-basis-moderner-datenpipelines-mit-stefan-sprenger/ [Data Science Deep Dive] #30: Agile Softwareentwicklung im Data-Science-Kontext https://www.podbean.com/ew/pb-mvspn-1482ea4 [Data Science Deep Dive] #23: Unsexy aber wichtig: Tests und Monitoring https://www.podbean.com/ew/pb-vxp58-13f311a [Data Science Deep Dive] #20: Ist Continuous Integration (CI) ein Muss für Data Scientists? https://www.podbean.com/ew/pb-4mkqh-13bb3b3 Fragen, Feedback und Themenwünsche gern an [email protected]
    --------  
    1:03:42
  • #65: Sicher ist nur die Unsicherheit: Unsicherheitsintervalle erklärt
    Punktprognosen sind was für Leute, die gerne enttäuscht werden ;) Wir befassen uns in dieser Episode mit der Quantifizierung und Kommunikation von Unsicherheit bei Prognosen. Dabei gehen Mira und Amit auf klassische Statistik, Bayes-Methoden, Machine Learning, Bootstrapping und Conformal Predictions ein. Außerdem gehen sie auf Herausforderungen der Data Literacy und bei rechenintensiven Ansätzen zur Bestimmung der Unsicherheit ein. Zusammenfassung Warum Unsicherheiten unverzichtbar sind (Beispiel Wetter-, Wahl-, Bewerberprognosen) Klassische Statistik: Konfidenzintervall vs. Prediction Intervall Bayesianische Sicht: Glaubwürdigkeitsintervalle ML-Methoden ohne Verteilungsannahmen: Bootstrapping & Conformal Predictions Rechenaufwand vs. Modellannahmen Data Literacy als Schlüssel zum richtigen Interpretieren von Prognoseintervallen Praxisnahe Beispiele und Entscheidungshilfen Links #10: Signifikanz https://www.podbean.com/ew/pb-y25ti-12fab65 #44: Lineare Regression in der Praxis – Oldie oder Goldie? https://www.podbean.com/ew/pb-jiecf-15d0ac1 #56: Unsere Bundestagswahl-Prognose: Wer gewinnt die Wahl 2025? https://www.podbean.com/ew/pb-hwgnd-16e446e Wer gewinnt die Bundestagswahl 2025? www.wer-gewinnt-die-wahl.de Molnar (2023): Introduction To Conformal Prediction With Python. A Short Guide For Quantifying Uncertainty Of Machine Learning Models. Sammlung von Ressourcen zu Conformal Predictions https://github.com/valeman/awesome-conformal-prediction/ Feedback, Fragen oder Themenwünsche gern an [email protected]
    --------  
    28:50

Weitere Technologie Podcasts

Über Data Science Deep Dive

Wir machen Data Science. Und in unserem Podcast Data Science Deep Dive reden wir darüber. Du bist ebenfalls Data Scientist oder interessierst dich für Daten, ML und AI? Dann ist dieser Podcast für dich. Wir teilen unsere Learnings aus über 180 Projekten, du bekommst Infos und Anregungen zu spannenden Themen rund um Daten. Wir klären auf, geben Hinweise und teilen unsere Erfahrungen, die wir in über 10 Jahren als Data Scientists im B2B Bereich gesammelt haben. Wir decken auf, was wirklich hinter den Hypes und Trends der Data Science Branche steckt. Wir hinterfragen, was ein Data Science Projekt erfolgreich macht und welche Faktoren es zum Scheitern verurteilen.
Podcast-Website

Hören Sie Data Science Deep Dive, Lex Fridman Podcast und viele andere Podcasts aus aller Welt mit der radio.de-App

Hol dir die kostenlose radio.de App

  • Sender und Podcasts favorisieren
  • Streamen via Wifi oder Bluetooth
  • Unterstützt Carplay & Android Auto
  • viele weitere App Funktionen
Rechtliches
Social
v7.14.0 | © 2007-2025 radio.de GmbH
Generated: 4/11/2025 - 2:02:55 PM